Protein interactions of Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP): association with Shc displaces SHIP from FcgammaRIIb in B cells.
نویسندگان
چکیده
Our recent studies revealed that the inositol phosphatase Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP) is phosphorylated and associated with Shc exclusively under negative signaling conditions in B cells, which is due to recruitment of the SHIP SH2 domain to the FcgammaRIIb. In addition, we reported that SHIP-Shc interaction involves both SHIP SH2 and Shc phosphotyrosine binding domains. These findings reveal a paradox in which the single SH2 domain of SHIP is simultaneously engaged to two different proteins: Shc and FcgammaRIIb. To resolve this paradox, we examined the protein interactions of SHIP. Our results demonstrated that isolated FcgammaRIIb contains SHIP but not Shc; likewise, Shc isolates contain SHIP but not FcgammaRIIb. In contrast, SHIP isolates contain both proteins, revealing two separate pools of SHIP: one bound to FcgammaRIIb and one bound to Shc. Kinetic studies reveal rapid SHIP association with FcgammaRIIb but slower and more transient association with Shc. Affinity measurements using a recombinant SHIP SH2 domain and phosphopeptides derived from FcgammaRIIb (corresponding to Y273) and Shc (corresponding to Y317) revealed an approximately equal rate of binding but a 10-fold faster dissociation rate for FcgammaRIIb compared with Shc phosphopeptide and yielding in an affinity of 2.1 microM for FcgammaRIIb and 0.26 microM for Shc. These findings are consistent with a model in which SHIP transiently associates with FcgammaRIIb to promote SHIP phosphorylation, whereupon SHIP binds to Shc and dissociates from FcgammaRIIb.
منابع مشابه
Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement of SHIP-2 in negative signalling of B-cells.
The termination of activation signals is a critical step in the control of the immune response; perturbation of inhibitory feedback pathways results in profound immune defects culminating in autoimmunity and overwhelming inflammation. FcgammaRIIB receptor is a well described inhibitory receptor. The ligation of B-cell receptor (BCR) and FcgammaRIIB leads to the inhibition of B-cell activation. ...
متن کاملTyrosine phosphorylation of shc in response to B cell antigen receptor engagement depends on the SHIP inositol phosphatase.
Tyrosine phosphorylation of Shc in response to B cell Ag receptor (BCR) engagement creates binding sites for the Src homology 2 (SH2) domain of Grb2. This facilitates the recruitment of both Grb2. Sos complexes and Grb2. SHIP complexes to the plasma membrane where Sos can activate Ras and SH2 domain-containing inositol phosphatase (SHIP) can dephosphorylate phosphatidylinositol 3,4,5-trisphosph...
متن کاملThe shc adaptor protein forms interdependent phosphotyrosine-mediated protein complexes in mast cells stimulated with interleukin 3.
The Shc adaptor protein possesses 2 distinct phosphotyrosine (pTyr) recognition modules-the pTyr binding (PTB) domain and the Src homology 2 (SH2) domain-and multiple potential sites for tyrosine (Tyr) phosphorylation (Tyr residues 239, 240, and 317). On stimulation of hematopoietic cells with interleukin 3 (IL-3), Shc becomes phosphorylated and may therefore contribute to IL-3 signaling. We in...
متن کاملThe Inositol Polyphosphate 5-Phosphatase Ship Is a Crucial Negative Regulator of B Cell Antigen Receptor Signaling
Ship is an Src homology 2 domain containing inositol polyphosphate 5-phosphatase which has been implicated as an important signaling molecule in hematopoietic cells. In B cells, Ship becomes associated with Fcgamma receptor IIB (FcgammaRIIB), a low affinity receptor for the Fc portion of immunoglobulin (Ig)G, and is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR)-FcgammaRIIB ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 162 3 شماره
صفحات -
تاریخ انتشار 1999